91精品少妇一区二区三区蜜桃臀,少妇搡BBBB搡BBB搡失恋,BBB片一毛片A片AA少妇,国产成人无码久久久久毛片朴信惠
掃碼關(guān)注公眾號(hào)           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  關(guān)于我們  聯(lián)系我們
精品人妻一区二区三区浪潮无限,国产熟妇毛多 A片欧美蜜臀,四川少妇搡BBB搡BBB爽爽爽小说
Rabbit Anti-Hepatitis C Virus 1b Core protein p19/Gold Conjugated antibody (bs-16472R-Gold)
訂購(gòu)熱線:400-901-9800
訂購(gòu)郵箱:sales@bioss.com.cn
訂購(gòu)QQ:  400-901-9800
技術(shù)支持:techsupport@bioss.com.cn
說(shuō) 明 書: 100ul(10nm  15nm  35nm
100ul/2980.00元
大包裝/詢價(jià)
產(chǎn)品編號(hào) bs-16472R-Gold
英文名稱 Rabbit Anti-Hepatitis C Virus 1b Core protein p19/Gold Conjugated antibody
中文名稱 膠體金標(biāo)記的丙型肝炎病毒1b抗體
別    名 Core protein p19; HCV core antigen; HCV core protein; Hepatitis C Virus core protein; polyprotein [Hepatitis C virus subtype 1b].  
規(guī)格價(jià)格 100ul/2980元 購(gòu)買        大包裝/詢價(jià)
說(shuō) 明 書 100ul(10nm  15nm  35nm
研究領(lǐng)域 細(xì)胞生物  細(xì)菌及病毒  
抗體來(lái)源 Rabbit
克隆類型 Polyclonal
交叉反應(yīng)
產(chǎn)品應(yīng)用 IEM=1:20-200 ICA=1:20-200 ChIP=1:20-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 7.6/21kDa
性    狀 Lyophilized or Liquid
濃    度 0.4mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human Hepatitis C Virus 1b Core protein p19
亞    型 IgG
純化方法 affinity purified by Protein A
儲(chǔ) 存 液 0.02M TBS(pH8.2) with 1% BSA, 0.03% Proclin300.
保存條件 Store at 2-8 oC for 3-6 months. Avoid repeated freeze/thaw cycles.
產(chǎn)品介紹 background:
Core protein packages viral RNA to form a viral nucleocapsid, and promotes virion budding. Modulates viral translation initiation by interacting with HCV IRES and 40S ribosomal subunit. Also regulates many host cellular functions such as signaling pathways and apoptosis. Prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma signaling pathways and by inducing human STAT1 degradation. Plays an important role in virus-mediated cell transformation leading to hepatocellular carcinomas. Interacts with, and activates STAT3 leading to cellular transformation. May repress the promoter of p53, and sequester CREB3 and SP110 isoform3/Sp110b in the cytoplasm. Also represses cell cycle negative regulating factor CDKN1A, thereby interrupting an important check point of normal cell cycle regulation. Targets transcription factors involved in the regulation of inflammatory responses and in the immune response: suppresses NK-kappaB activation, and activates AP-1. Mediates apoptotic pathways throught association with TNF-type receptors TNFRSF1A and LTBR, although its effect on death receptors-induced apoptosis remains controvertial. Enhances TRAIL mediated apoptosis, suggesting that it might play a role in mediated apoptosis, suggesting that it might play a role in immune-mediated liver cell injury. Secreted core protein is able to bind C1QR1 at the T-cell surface, resulting in down-regulation of T-lymphocytes proliferation. May transactivate human MYC, Rous sarcoma virus LTR, and SV40 promoters. May suppress the human FOS and HIV-1 LTR activity. May alter lipid metabolism by interacting with hepatocellular proteins involved in lipid accumulation and storage.

Function:
Core protein packages viral RNA to form a viral nucleocapsid, and promotes virion budding. Modulates viral translation initiation by interacting with HCV IRES and 40S ribosomal subunit. Also regulates many host cellular functions such as signaling pathways and apoptosis. Prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma signaling pathways and by inducing human STAT1 degradation. Thought to play a role in virus-mediated cell transformation leading to hepatocellular carcinomas. Interacts with, and activates STAT3 leading to cellular transformation. May repress the promoter of p53, and sequester CREB3 and SP110 isoform 3/Sp110b in the cytoplasm. Also represses cell cycle negative regulating factor CDKN1A, thereby interrupting an important check point of normal cell cycle regulation. Targets transcription factors involved in the regulation of inflammatory responses and in the immune response: suppresses NK-kappaB activation, and activates AP-1. Could mediate apoptotic pathways through association with TNF-type receptors TNFRSF1A and LTBR, although its effect on death receptor-induced apoptosis remains controversial. Enhances TRAIL mediated apoptosis, suggesting that it might play a role in immune-mediated liver cell injury. Seric core protein is able to bind C1QR1 at the T-cell surface, resulting in down-regulation of T-lymphocytes proliferation. May transactivate human MYC, Rous sarcoma virus LTR, and SV40 promoters. May suppress the human FOS and HIV-1 LTR activity. Alters lipid metabolism by interacting with hepatocellular proteins involved in lipid accumulation and storage. Core protein induces up-regulation of FAS promoter activity, and thereby probably contributes to the increased triglyceride accumulation in hepatocytes (steatosis).

Subunit:
Core protein is a homomultimer that binds the C-terminal part of E1 and interacts with numerous cellular proteins. Interaction with human STAT1 SH2 domain seems to result in decreased STAT1 phosphorylation, leading to decreased IFN-stimulated gene transcription. In addition to blocking the formation of phosphorylated STAT1, the core protein also promotes ubiquitin-mediated proteasome-dependent degradation of STAT1. Interacts with, and constitutively activates human STAT3. Associates with human LTBR and TNFRSF1A receptors and possibly induces apoptosis. Binds to human SP110 isoform 3/Sp110b, HNRPK, C1QR1, YWHAE, UBE3A/E6AP, DDX3X, APOA2 and RXRA proteins. Interacts with human CREB3 nuclear transcription protein, triggering cell transformation. May interact with human p53. Also binds human cytokeratins KRT8, KRT18, KRT19 and VIM (vimentin). E1 and E2 glycoproteins form a heterodimer that binds to human LDLR, CLDN1, CD81 and SCARB1 receptors. E2 binds and inhibits human EIF2AK2/PKR. Also binds human CD209/DC-SIGN and CLEC4M/DC-SIGNR. p7 forms a homoheptamer in vitro. NS2 forms a homodimer containing a pair of composite active sites at the dimerization interface. NS2 seems to interact with all other non-structural (NS) proteins. NS4A interacts with NS3 serine protease and stabilizes its folding. NS3-NS4A complex is essential for the activation of the latter and allows membrane anchorage of NS3. NS3 interacts with human TANK-binding kinase TBK1 and MAVS. NS4B and NS5A form homodimers and seem to interact with all other non-structural (NS) proteins. NS5A also interacts with human EIF2AK2/PKR, FKBP8, GRB2, BIN1, PIK3R1, SRCAP, VAPB and with most Src-family kinases. NS5B is a homooligomer and interacts with human VAPB, HNRNPA1 and SEPT6.

Subcellular Location:
Core protein p21: Host endoplasmic reticulum membrane; Single-pass membrane protein. Host mitochondrion membrane; Single-pass type I membrane protein. Host lipid droplet. Note=The C-terminal transmembrane domain of core protein p21 contains an ER signal leading the nascent polyprotein to the ER membrane. Only a minor proportion of core protein is present in the nucleus and an unknown proportion is secreted.
Core protein p19: Virion. Host cytoplasm. Host nucleus. Secreted.

Post-translational modifications:
Specific enzymatic cleavages in vivo yield mature proteins. The structural proteins, core, E1, E2 and p7 are produced by proteolytic processing by host signal peptidases. The core protein is synthesized as a 21 kDa precursor which is retained in the ER membrane through the hydrophobic signal peptide. Cleavage by the signal peptidase releases the 19 kDa mature core protein. The other proteins (p7, NS2-3, NS3, NS4A, NS4B, NS5A and NS5B) are cleaved by the viral proteases.
Envelope E1 and E2 glycoproteins are highly N-glycosylated.
Core protein is phosphorylated by host PKC and PKA.
NS5A is phosphorylated in a basal form termed p56. p58 is an hyperphosphorylated form of p56. p56 and p58 coexist in the cell in roughly equivalent amounts. Hyperphosphorylation is dependent on the presence of NS4A. Human AKT1, RPS6KB1/p70S6K, MAP2K1/MEK1, MAP2K6/MKK6 and CSNK1A1/CKI-alpha kinases may be responsible for NS5A phosphorylation.
NS4B is palmitoylated. This modification may play a role in its polymerization or in protein-protein interactions.
The N-terminus of a fraction of NS4B molecules seems to be relocated post-translationally from the cytoplasm to the ER lumen, with a 5th transmembrane segment. The C-terminus of NS2 may be lumenal with a fourth transmembrane segment.
Core protein is ubiquitinated; mediated by UBE3A and leading to core protein subsequent proteasomal degradation.

Similarity:

Contains 1 peptidase C18 domain.
Contains 1 peptidase S29 domain.
Contains 1 RdRp catalytic domain.

Database links:

Entrez Gene: 951475 Hepatitis C Virus genotype 1b

SwissProt: P26662 Hepatitis C Virus genotype 1b

SwissProt: P26663 Hepatitis C Virus genotype 1b

SwissProt: Q9WMX2 Hepatitis C Virus genotype 1b



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
版權(quán)所有 2004-2026 www.rvdoil.com 北京博奧森生物技術(shù)有限公司
通過(guò)國(guó)際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號(hào): 00124Q34771R2M/1100
通過(guò)國(guó)際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號(hào): CQC24QY10047R0M/1100
京ICP備05066980號(hào)-1         京公網(wǎng)安備110107000727號(hào)
无码人妻精品一区二区蜜桃色欲 | 四川BBB揉BBB揉多人乱薍 | 99re在线视频播放 | 国产毛片人妻人伦人人澡 | 搡老熟女大熟了88AV一区二区 | 免费 无码 国产免费 | 国产无套内射免费观看 | 国产熟女毛多水大高潮 | 亚洲天堂在线播放 | 伦色情理伦片A片AAA毛 | 中文字幕高清无码视频 | 91麻豆产精品久久久久久夏晴子 | 一级久久久久久片18 | 欧一美一交一配一交一交一视频 | 亚洲黄色电影免费在线观看 | 中文字幕aV无码一区二区三区 | 老熟女近親相姦在綫觀看 | 日本AAAA片毛片免费观蜜桃 | 久久久久久久久久网站 | 免费A级做爰片免费视频 | 扒开腿挺进肉嫩小泬18禁 | 苍井さくら无码AV无破坏流出 | 午夜视频免费观看 | 红桃视频成人传媒视频在线观看 | 亚洲免费高清视频 | 欧美做受 大肥婆 野战农村妇女一级A片 | 色情无码AⅤ苍井空 | 真实人妻互换毛片视频 | 农村寡妇精品一区二区电影 | 蜜臀色欲AV无码人妻 | 成人AV一区二区三区 | 免费无码成人又爽又高潮 | 日本中文字幕理论片 | 欧美亚洲精品在线观看 | 国产黄A片免费网站免费 | X9X9X9搡BBBB搡BBB 囯产精品久久久久久久久在饯观看 | 少妇高潮灌满白浆毛片免费看 | 国产精品农村妇女aaaa | 91又大又爽又黄无码A片 | 免费无码婬片AAAA片小说直播 | 亂倫近親相姦免费中文字幕 |