產(chǎn)品編號 | bs-0675R-AP |
英文名稱 | Rabbit Anti-FGFR2/AP Conjugated antibody |
中文名稱 | 堿性磷酸酶(AP)標(biāo)記的成纖維細(xì)胞生長因子受體2抗體 |
別 名 | KGFR; KSAM; Bacteria expressed kinase; BEK; BEK fibroblast growth factor receptor; BFR 1; BFR1; CD 332; CD332; CD332 antigen; CEK 3; CEK3; CFD 1; CFD1; Craniofacial dysostosis 1; Crouzon syndrome; ECT 1; ECT 1; ECT1; FGF receptor; FGFR 2; FGFR-2; Fgfr2; FGFR2_HUMAN; Fibroblast growth factor receptor 2; Hydroxyaryl protein kinase; Hydroxyaryl protein kinase; Jackson Weiss syndrome; JWS; JWS antibody K SAM; K sam protein; K sam protein; K-sam ; Keratinocyte growth factor receptor 2; Keratinocyte growth factor receptor; Pfeiffer syndrome; Protein tyrosine kinase receptor like 14; TK14; TK25; Tyrosylprotein kinase; Tyrosylprotein kinase. |
規(guī)格價(jià)格 | 100ul/2980元 購買 大包裝/詢價(jià) |
說 明 書 | 100ul |
研究領(lǐng)域 | 腫瘤 心血管 免疫學(xué) 神經(jīng)生物學(xué) 信號轉(zhuǎn)導(dǎo) 干細(xì)胞 生長因子和激素 激酶和磷酸酶 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | Human, Mouse, (predicted: Rat, ) |
產(chǎn)品應(yīng)用 | IHC-P=1:50-200 IHC-F=1:50-200 ICC=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 89kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from human FGFR2 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: Fibroblast growth factors (FGFs) are members of a large family of structurally related polypeptides that are potent physiological regulators of growth and differentiation for a wide variety of cells of mesodermal, ectodermal and endodermal origin. Four genes encoding for high affinity cell surface FGF receptors (FGFRs) have been identified: FGFR1, FGFR2, FGFR3 and FGFR4. FGFRs are members of the tyrosine kinase family of growth factor receptors. FGFR2 is highly expressed in developing human tissues including the brain, choroids plexus, lung etc. Alternative names: Bacteria expressed kinase; BEK; BFR 1; BFR1; CD 332; CD332; CD332 antigen; CEK 3; CEK3; CFD 1; CFD1; Craniofacial dysostosis 1; Crouzon syndrome; ECT 1; ECT1; FGFR 2; Fibroblast growth factor receptor 2; Hydroxyaryl protein kinase; Jackson Weiss syndrome; JWS; K SAM; K sam protein; Keratinocyte growth factor receptor 2; Keratinocyte growth factor receptor; KGFR; KSAM; Pfeiffer syndrome; Protein tyrosine kinase receptor like 14; TK14; TK25; Tyrosylprotein kinase. Function: Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation, migration and apoptosis, and in the regulation of embryonic development. Required for normal embryonic patterning, trophoblast function, limb bud development, lung morphogenesis, osteogenesis and skin development. Plays an essential role in the regulation of osteoblast differentiation, proliferation and apoptosis, and is required for normal skeleton development. Promotes cell proliferation in keratinocytes and immature osteoblasts, but promotes apoptosis in differentiated osteoblasts. Phosphorylates PLCG1, FRS2 and PAK4. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. FGFR2 signaling is down-regulated by ubiquitination, internalization and degradation. Mutations that lead to constitutive kinase activation or impair normal FGFR2 maturation, internalization and degradation lead to aberrant signaling. Over-expressed FGFR2 promotes activation of STAT1. Subunit: Monomer. Homodimer after ligand binding. Interacts predominantly with FGF1 and FGF2, but can also interact with FGF3, FGF4, FGF6, FGF7, FGF8, FGF9, FGF10, FGF17, FGF18 and FGF22 (in vitro). Ligand specificity is determined by tissue-specific expression of isoforms, and differences in the third Ig-like domain are crucial for ligand specificity. Isoform 1 has high affinity for FGF1 and FGF2, but low affinity for FGF7. Isoform 3 has high affinity for FGF1 and FGF7, and has much higher affinity for FGF7 than isoform 1 (in vitro). Affinity for fibroblast growth factors (FGFs) is increased by heparan sulfate glycosaminoglycans that function as coreceptors. Likewise, KLB increases the affinity for FGF19 and FGF21. Interacts with PLCG1, GRB2 and PAK4. Subcellular Location: Cell membrane; Single-pass type I membrane protein. Golgi apparatus. Cytoplasmic vesicle. Note=Detected on osteoblast plasma membrane lipid rafts. After ligand binding, the activated receptor is rapidly internalized and degraded. Isoform 1: Cell membrane; Single-pass type I membrane protein. Note=After ligand binding, the activated receptor is rapidly internalized and degraded. Isoform 3: Cell membrane; Single-pass type I membrane protein. Note=After ligand binding, the activated receptor is rapidly internalized and degraded. Post-translational modifications: N-glycosylated in the endoplasmic reticulum. The N-glycan chains undergo further maturation to an Endo H-resistant form in the Golgi apparatus. Ubiquitinated. FGFR2 is rapidly ubiquitinated after autophosphorylation, leading to internalization and degradation. Subject to degradation both in lysosomes and by the proteasome. DISEASE: Defects in FGFR2 are the cause of Crouzon syndrome (CS) [MIM:123500]; also called craniofacial dysostosis type I (CFD1). CS is an autosomal dominant syndrome characterized by craniosynostosis (premature fusion of the skull sutures), hypertelorism, exophthalmos and external strabismus, parrot-beaked nose, short upper lip, hypoplastic maxilla, and a relative mandibular prognathism. Defects in FGFR2 are a cause of Jackson-Weiss syndrome (JWS) [MIM:123150]. JWS is an autosomal dominant craniosynostosis syndrome characterized by craniofacial abnormalities and abnormality of the feet: broad great toes with medial deviation and tarsal-metatarsal coalescence. Defects in FGFR2 are a cause of Apert syndrome (APRS) [MIM:101200]; also known as acrocephalosyndactyly type 1 (ACS1). APRS is a syndrome characterized by facio-cranio-synostosis, osseous and membranous syndactyly of the four extremities, and midface hypoplasia. The craniosynostosis is bicoronal and results in acrocephaly of brachysphenocephalic type. Syndactyly of the fingers and toes may be total (mitten hands and sock feet) or partial affecting the second, third, and fourth digits. Intellectual deficit is frequent and often severe, usually being associated with cerebral malformations. Defects in FGFR2 are a cause of Pfeiffer syndrome (PS) [MIM:101600]; also known as acrocephalosyndactyly type V (ACS5). PS is characterized by craniosynostosis (premature fusion of the skull sutures) with deviation and enlargement of the thumbs and great toes, brachymesophalangy, with phalangeal ankylosis and a varying degree of soft tissue syndactyly. Three subtypes of Pfeiffer syndrome have been described: mild autosomal dominant form (type 1); cloverleaf skull, elbow ankylosis, early death, sporadic (type 2); craniosynostosis, early demise, sporadic (type 3). Defects in FGFR2 are the cause of Beare-Stevenson cutis gyrata syndrome (BSCGS) [MIM:123790]. BSCGS is an autosomal dominant condition is characterized by the furrowed skin disorder of cutis gyrata, acanthosis nigricans, craniosynostosis, craniofacial dysmorphism, digital anomalies, umbilical and anogenital abnormalities and early death. Defects in FGFR2 are the cause of familial scaphocephaly syndrome (FSPC) [MIM:609579]; also known as scaphocephaly with maxillary retrusion and mental retardation. FSPC is an autosomal dominant craniosynostosis syndrome characterized by scaphocephaly, macrocephaly, hypertelorism, maxillary retrusion, and mild intellectual disability. Scaphocephaly is the most common of the craniosynostosis conditions and is characterized by a long, narrow head. It is due to premature fusion of the sagittal suture or from external deformation. Defects in FGFR2 are a cause of lacrimo-auriculo-dento-digital syndrome (LADDS) [MIM:149730]; also known as Levy-Hollister syndrome. LADDS is a form of ectodermal dysplasia, a heterogeneous group of disorders due to abnormal development of two or more ectodermal structures. LADDS is an autosomal dominant syndrome characterized by aplastic/hypoplastic lacrimal and salivary glands and ducts, cup-shaped ears, hearing loss, hypodontia and enamel hypoplasia, and distal limb segments anomalies. In addition to these cardinal features, facial dysmorphism, malformations of the kidney and respiratory system and abnormal genitalia have been reported. Craniosynostosis and severe syndactyly are not observed. Defects in FGFR2 are the cause of Antley-Bixler syndrome (ABS) [MIM:207410]. ABS is a multiple congenital anomaly syndrome characterized by craniosynostosis, radiohumeral synostosis, midface hypoplasia, malformed ears, arachnodactyly and multiple joint contractures. ABS is a heterogeneous disorder and occurs with and without abnormal genitalia in both sexes. Similarity: Belongs to the protein kinase superfamily. Tyr protein kinase family. Fibroblast growth factor receptor subfamily. Contains 3 Ig-like C2-type (immunoglobulin-like) domains. Contains 1 protein kinase domain. Database links: Entrez Gene: 2263 Human Entrez Gene: 14183 Mouse Omim: 176943 Human SwissProt: P21802 Human SwissProt: P21803 Mouse Unigene: 533683 Human Unigene: 16340 Mouse Unigene: 12732 Rat Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. KGFR又稱FGFR2(Fibroblast Growth Factor Receptor 2)成纖維細(xì)胞生長因子受體又稱:纖維母細(xì)胞生長因子受體2,是FGFRs家族的一員。不同的FGFR對FGF親和力不同,在組織的分布也不一樣。FGFR-2對細(xì)胞的增殖、分化、血管生成、胚胎及骨骼發(fā)育和在與生長發(fā)育相關(guān)的進(jìn)程中起著十分重要的作用. |
| 精品三级片久久久久久久 | 欧美性做爰又大又粗又长 | 91在线无码精品秘 软件网站 | 国产无套内射普通话对白精品 | 国产乱国产乱老熟300视频 | 欧美成人精品免费17c | 精品一级毛片A久久久久 | 国产精品嫩草影院 竹菊 | 国产精品三级片久色 | 中文字幕免费在线观看 | 国产又大又粗又硬视频 | 国精产品一区二区三区在线观看 | 成人做爰A片免费看视频 | 成人无码色情77777 | 另类老妇性BBwBBw | 国产麻豆剧传媒精品国产AV | 午夜av色欲aV | 五十路人妻中文字模 | 欧美交换配乱婬粗大嫩模 | 免费无码婬片AAAA片直播表情 | 69精品人妻一区二区三区蜜桃乛 | 黄大色黄大片女爽一次 | 亚洲少妇激情海角社区 | 特级西西WWWw444大胆高清 | 国产精品视频第一页 | 韩国无码影片在线观看 | 视频在线一区二区 | 91丨国产丨白浆秘 洗澡 | 无码人妻精品一区二区蜜桃漫画 | 肉色丝袜玉足诱惑自慰在线免费观看 | 99久久99久久精品國產片果凍 | 丰满孕妇高潮一级A片 | 精品无码人妻一区二区免费 | 亚洲精品国产精品国自产 | 久久国产乱子伦精品一区二区小说 | 天天日人人操天天射 | 风骚老女 中文字幕 | 丰满人妻的婬乱生活2 | 成年视频免费黄网站在线观看 | 亚洲无码国产精品 |