產(chǎn)品編號(hào) | bs-2339R-BF488 |
英文名稱 | Rabbit Anti-EV71 polyprotein 3D/BF488 Conjugated antibody |
中文名稱 | BF488標(biāo)記的腸道病毒71型/手足口病病毒抗體 |
別 名 | 3D polymerase; Human enterovirus 71 polyprotein 3D; EV71; Enterovirus 71. |
規(guī)格價(jià)格 | 100ul/2980元 購買 大包裝/詢價(jià) |
說 明 書 | 100ul |
研究領(lǐng)域 | 細(xì)胞生物 免疫學(xué) 細(xì)菌及病毒 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | |
產(chǎn)品應(yīng)用 | ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 351kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from EV71 polyprotein 3D |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲(chǔ) 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: Enteroviruses, such as enterovirus 71, are classified to be in the picornavirus family, pico [small] + RNA [ribonucleic acid] + virus. Picornaviruses are among the smallest and simplest ribonucleic acid containing viruses known (1). The RNA for many enteroviruses have now been cloned and complete genomic sequences have been obtained. The RNA from all sequenced enteroviruses are similar in length, about 7400 nucleotides, and have identical organization (1). The human alimentary tract is the predominant site of enterovirus replication and these viruses were first isolated from enteric specimens. These viruses are the cause of paralytic poliomyelitis, aseptic meningitis-encephalitis, myocarditis, pleurodynia, hand-foot-and-mouth disease, conjunctivitis, and numerous other syndromes associated with extra-intestinal target organs. There are 67 numbered types of enteroviruses in the enterovirus family (1): three polioviruses, twenty-three coxsackieviruses A, six coxsackieviruses B, thirty-one echoviruses, and four other enteroviruses. Function: Protein VP1: Forms, together with VP2 and VP3, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Protein VP1 mainly forms the vertices of the capsid. VP1 interacts with host cell receptor to provide virion attachment to target cell. After binding to its receptor, the capsid undergoes conformational changes. VP1 N-terminus (that contains an amphipathic alpha-helix) is externalized, VP4 is released and together, they shape a virion-cell connecting channel and a pore in the host membrane through which RNase-protected transfer of the viral genome takes place. After genome has been released, the channel shrinks. Protein VP2: Forms, together with VP1 and VP3, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and Protein VP3: Forms, together with VP1 and VP2, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. VP4 is released, VP1 N-terminus is externalized, and together, they shape a virion-cell connecting channel and a pore in the host membrane through which RNase-protected transfer of the viral genome takes place. After genome has been released, the channel shrinks. Protein VP0: Protein VP0: VP0 precursor is a component of immature procapsids, which gives rise to VP4 and VP2 afer maturation. Allows the capsid to remain inactive before the maturation step. Protease 2A: cysteine protease that is responsible for the cleavage between the P1 and P2 regions. It cleaves the host translation initiation factor EIF4G1, in order to shut off the capped cellular mRNA transcription (By similarity). Protein 2B: Affects membrane integrity and cause an increase in membrane permeability. Protein 2C: Associates with and induces structural rearrangements of intracellular membranes. It displays RNA-binding, nucleotide binding and NTPase activities. Protein 3A, via its hydrophobic domain, serves as membrane anchor. It also inhibits endoplasmic reticulum-to-Golgi transport. Protease 3C: cysteine protease that generates mature viral proteins from the precursor polyprotein. In addition to its proteolytic activity, it binds to viral RNA, and thus influences viral genome replication. RNA and substrate bind cooperatively to the protease. RNA-directed RNA polymerase 3D-POL replicates genomic and antigenomic RNA by recognizing replications specific signals. Subunit: Protein 2C N-terminus interacts with human RTN3. This interaction is important for viral replication. Subcellular Location: Protein VP2: Virion. Host cytoplasm (Potential). Protein VP3: Virion. Host cytoplasm (Potential). Protein VP1: Virion. Host cytoplasm (Potential). Protein 2B: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side (Potential). Note=Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum. Protein 2C: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side (Potential). Note=Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum. Protein 3A: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side (Potential). Note=Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum. Protein 3B: Virion (Potential). Protease 3C: Host cytoplasm (Potential). RNA-directed RNA polymerase 3D-POL: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side (Potential). Note=Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum. Post-translational modifications: Specific enzymatic cleavages in vivo by the viral proteases yield a variety of precursors and mature proteins. Polyprotein processing intermediates such as VP0 which is a VP4-VP2 precursor are produced. During virion maturation, non-infectious particles are rendered infectious following cleavage of VP0. This maturation cleavage is followed by a conformational change of the particle. VPg is uridylylated by the polymerase and is covalently linked to the 5'-end of genomic RNA. This uridylylated form acts as a nucleotide-peptide primer for the polymerase. Myristoylation of VP4 is required during RNA encapsidation and formation of the mature virus particle. Similarity: Belongs to the picornaviruses polyprotein family. Contains 2 peptidase C3 domains. Contains 1 RdRp catalytic domain. Contains 1 SF3 helicase domain. Database links: SwissProt: Q66478 HE71B Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| 麻豆精品国产传媒在线精品 | 波多野结衣高潮狂喷hd | 国产精品色情无码视频A片黑寡妇 | 亚洲人成人无码网www国产 | 丰满老熟妇好大BBBBB | √资源天堂中文在线视频 | 浙江妇搡BBBB搡BBBB | 日本三级电影中文字幕 | 成人性生活视频免费观看 | 国产真人做爰毛片视频直播 | 久久国产精华液亚洲午夜精品久久 | 3D动漫精品啪啪一区二区免费 | 国产第一页精品先锋影音视频 | 无码人妻熟妇av又粗又大 | 人人看人人澡人人做 | 不卡影视在线观看三区 | 香蕉在线一区二区三区视频 | 黄色网址在线免费观看 | 911精品人妻一区二区三区A片 | 吹潮喷水白浆在线播放 | 无码人妻精品一区二区蜜桃91 | 2019中文在线观看免费观看电视剧 | 亚州一区二区三区成人片 | 潘金莲婬片A片免费播放 | 果酱短视频成人版黄A片 | 顶级殴美性受XXXX | 国产高清视频在线观看 | 高清国产一区二区三区 | 欧美亚洲国产精品久久高清浪潮 | 妇欲欢公爽公妇精品一区 | 成人做爰黄AA片免费看 | 日本丝袜自慰A片老师 | 中文字幕乱码亚洲中文在线 | 婷婷四房综合激情五月 | 国产精品无码人妻一区二区在线 | 国产高清无码视频 | 久久久成人免费视频 | 成人性爱电影一区,二区 | 国产精品久久久久久一级毛片许晴 | 国产精品老熟女视频一区二区 |